

Graph theoretical investigation of memory and attention networks in the brain Morgan Botdorf, Fengji Geng, & Tracy Riggins University of Maryland, College Park

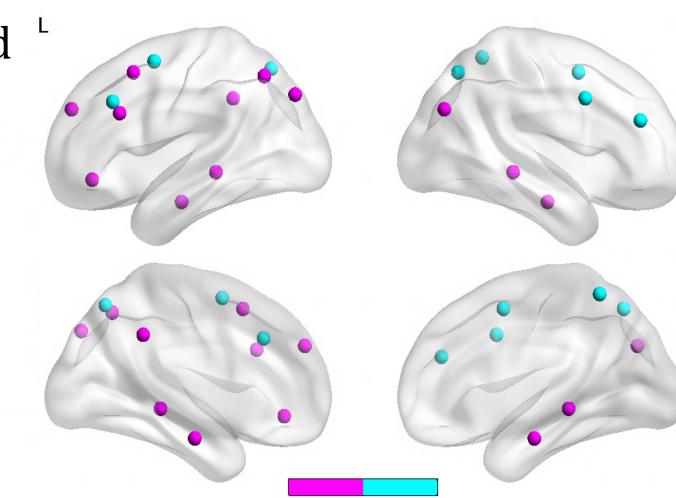
Introduction

- Memory in adults and children relies on a distributed network of regions in the brain, including the hippocampus^{1,2}.
- Recent research has suggested that prefrontal regions, included within the frontoparietal attention network, are also important for the development of memory³.
- Interactive specialization⁴ suggests that brain and cognitive development occurs through increased integration and segregation of brain networks.
- The present study uses graph theoretical analysis to:
 - Investigate *integration* and *segregation* of the episodic memory and frontoparietal networks in

• **Metrics of interest**: metrics were used to assess integration and segregation at network and node level

(R/L anterior/posterior hippocampus)

Network Level

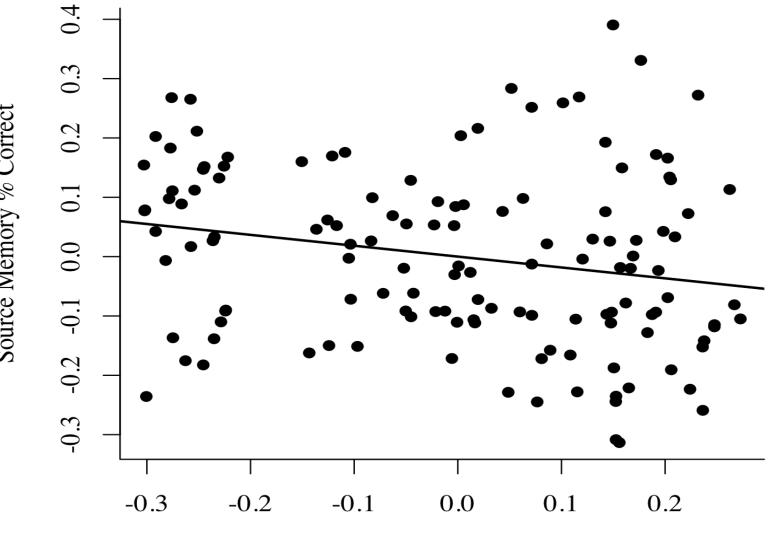

Node Level

 children and adults. Investigate associations between <i>integration</i> and <i>segregation</i> and <i>memory performance</i> in children. 	Integration Segregation	 Global efficiency (E_{glob}) Modularity (Q) 	 Within-module degree (Z) Participation coefficient (P) 	
Methods		Results		
Participants	Children	Adults	Children	Adults
 137 children aged 4-8 years (<i>M</i>= 6.50, <i>SD</i> = 1.48 years) and 30 adults (<i>M</i>=24.5, <i>SD</i> =5.3 years) are included the study. Behavioral Data Children completed a Source Memory Task⁵ where they had to recall facts and the source of the facts (puppet vs. person). 			<image/>	
MRI Data Puppet Person	Network structure	1 1 1.	EM	
 T1-weighted high resolution (1mm³) anatomical images were acquired from a Siemens 3T scanner with a 32- channel coil using a standard structural scan sequence. 	 Similar organization in children a Strength of associations is strong Network level integration & segregat Global efficiency is significantly high 	er in adults. tion		3,

 Task-free functional data was collected via a 7 min fMRI scan during which participants viewed *Inscapes*, a video of abstract shapes⁶.

Methods: Defining Nodes

 Episodic memory and frontoparietal nodes were defined on an MNI child template using peak coordinates from meta-analyses in *Neurosynth*.


• Regions were defined using a 5mm sphere.

0	0	L			
Node	MNI Coordinates				
	X	У	X	Community	
L Anterior Hippocampus	-24	-14	-20	EMN	
R Anterior Hippocampus	24	14	20	EMN	
L Posterior Hippocampus	-26	-34	-4	EMN	
R Posterior Hippocampus	26	-34	-4	EMN	
L Middle Occipital Gyrus	-32	-80	38	EMN	
L Middle Cingulate Cortex	-8	-44	36	EMN	
L Middle Frontal Gyrus	-38	14	50	EMN	
L Inferior Parietal Lobule	-38	-62	48	EMN	
R Middle Occipital Gyrus	42	-74	30	EMN	
L Inferior Frontal Gyrus (orbitalis)	-38	38	-8	EMN	
L Superior Frontal Gyrus	-16	50	30	EMN	
L Inferior Frontal Gyrus (triangularis)	-48	22	28	EMN	
R Superior Parietal Lobule	18	-66	50	FPN	
L Superior Parietal Lobule	-14	-66	52	FPN	
R Middle Frontal Gyrus	26	4	50	FPN	
L Middle Frontal Gyrus	-28	2	56	FPN	
R Middle Frontal Gyrus	44	40	24	FPN	
R Precentral Gyrus	46	8	36	FPN	
L Middle Frontal Gyrus	-44	26	34	FPN	
R Precuneus	4	-52	58	FPN	

- SD=0.02, t(165) = 7.85, p < .001).
- Modularity does not significantly differ between adults (M= 0.07, SD=0.06) and children (M= 0.06, SD=0.07, t(165)=0.97, p = .33).

Node level integration & segregation

- Neither within-module degree nor participation coefficient differs with age in children.
- Participation coefficient associated with right posterior hippocampus is negatively associated with source memory performance (B = -.19, SE = 0.07, p = .01) after controlling for effects due to age and IQ.
- No association between within-module degree and memory performance.

Participation Coefficient (R. Posterior Hippocampus)

Discussion

Results suggest:

- Similar network structure in children and adults.
- Increased integration, but not segregation, of the episodic memory network and the frontoparietal attention network in adults compared to children.
- Individual differences in segregation of the hippocampus from the frontoparietal network is related to performance on a source memory task in children.

• This supports prior research that suggests kids who rely on regions within the episodic memory network perform better on memory tasks than kids who don't rely on such regions⁷.

Vincent, J. L., Snyder, A. Z., Fox, M. D., Shannon, B. J., Andrews, J. R., Raichle, M. E., ... Shannon, B. J. (2006). Coherent Spontaneous Activity Identifies a Hippocampal-Parietal Memory Network. *Journal of Neurophysiology*, 96, 3517–3531. Riggins, T., Geng, F., Blankenship, S. L., & Redcay, E. (2016). Hippocampal functional connectivity and episodic memory in early childhood. *Developmental Cognitive Neuroscience*, 19, 58– 69

References

Johnson, M. H. (2001). Functional Brain Development in Humans. *Nature Neuroscience Review*, 2(July), 475–483. Tang, L., Shafer, A. T., & Ofen, N. (2018). Prefrontal Cortex Contributions to the Development of Memory Formation. *Cerebral Cortex*, 28(9), 3295–3308. Riggins, T. (2014). Longitudinal investigation of source memory reveals different developmental trajectories for item memory and binding. *Developmental Psychology*, 50(2), 449–459. Vanderwal, T., Kelly, C., Eilbott, J., Mayes, L. C., & Castellanos, F. X. (2015). Inscapes : A movie paradigm to improve compliance in functional magnetic resonance imaging. *NeuroImage*, 122, 222–232. Riggins, T., Geng, F., Blankenship, S. L., & Redcay, E. (2016). Hippocampal functional connectivity and episodic memory in early childhood. *Developmental Cognitive Neuroscience*, 19, 58–

Acknowledgements We would like to acknowledge support from the National Science Foundation GRFP and the National Institutes of

Health (Grant number RO1 HD079518-04). For questions or comments, please contact mbotdorf@terpmail.umd.edu